Roentgen Stereophotogrammetric Analysis Methods for Determining Ten Causes of Lengthening of a Soft-Tissue Anterior Cruciate Ligament Graft Construct

Conrad Smith
Biomedical Engineering Program,
University of California,
One Shields Avenue,
Davis, CA 95616

M. L. Hull1
Biomedical Engineering Program,
and Department of Mechanical Engineering,
University of California,
One Shields Avenue,
Davis, CA 95616
e-mail: mlhull@ucdavis.edu

S. M. Howell
Department of Mechanical Engineering,
University of California,
One Shields Avenue,
Davis, CA 95616

Introduction

Single-loop tibialis tendon allografts have increased in popularity owing to their many advantages over patellar tendon and double-loop hamstring tendon autografts for anterior cruciate ligament (ACL) reconstructions [1–5]. Nevertheless, clinically important increases in anterior laxity occur postoperatively in 9–22% of patients following ACL reconstruction for single-looped tibialis allografts [1,3]. Although the causes are unknown, increased anterior laxity can be traced to lengthening of the graft construct (i.e., graft-fixation-bone complex). To prevent clinically important increases in anterior laxity, it is of interest to determine the causes and corresponding amounts of lengthening of the graft construct because this information would be beneficial in devising measures to limit increases in anterior laxity.

Lengthening of the graft construct can be due to many causes, ten of which include plastic (i.e., nonrecoverable) deformations and increases in elastic deformations (Fig. 1). Plastic causes include plastic deformation (1) between femoral fixation and bone, (2) between the graft and femoral fixation, (3) between the graft and tibial fixation, (4) between the tibial fixation and bone, and (5) of the graft substance between the fixations. Elastic causes include an increase in elastic deformations due to a decrease in elastic stiffness (6) between the femoral fixation and bone, (7) between the graft and femoral fixation, (8) between the graft and tibial fixation, (9) between the tibial fixation and bone, and (10) of the graft substance between the fixations. Hence, eight of these ten causes are associated with the fixations (four plastic and four elastic) and two are associated with the graft (one plastic and one elastic).
Fig. 1 Diagram depicting ten causes of lengthening of a soft-tissue ACL graft construct, which include five plastic causes and five elastic causes. The five plastic causes are nonreversible deformation (1) between the femoral fixation and bone (PFXB), (2) between the graft and femoral fixation (PFGX), (3) between the graft and tibial fixation (PTGX), (4) between the tibial fixation and bone (PTXB), and (5) of the graft substance between the fixations (PG). The five elastic causes are lengthening due to a decrease in elastic stiffness (1) between the femoral fixation and bone (EFXB), (2) between the graft and femoral fixation (EFGX), (3) between the graft and tibial fixation (ETGX), (4) between the tibial fixation and bone (ETXB), and (5) of the graft substance between the fixations (EG). Of these ten causes, the eight causes associated with the fixations were measured using RSA.

elastic). The various plastic causes lead to an increase in the slack (i.e., unloaded) length of the graft construct, whereas the various elastic causes lead to an additional increase in the length of the graft construct under load. Because some of these causes such as plastic lengthening of the graft midsubstance may result from biological processes (e.g., remodeling of the graft), these causes ultimately must be determined in vivo, which requires a proven method of measurement in vitro.

One method that offers the potential to directly quantify eight causes of lengthening associated with the fixations in vivo is Roentgen stereophotogrammetric analysis (RSA). RSA has been used previously to determine some of these causes [6–9] but to the knowledge of the authors, no study has demonstrated whether RSA can be used to quantify eight causes of lengthening of a graft construct associated with the fixations. Therefore, the first objective of this study was to develop the methods to determine these eight causes using RSA and to demonstrate the usefulness of these methods during cyclic loading of cadaveric knees.

Although the remaining two causes associated with the graft cannot be determined using RSA because the graft is not in a straight line, these two causes might still be determined by other means. If the eight causes associated with the fixations can be determined, then the deformations of the graft could be computed based on the relationships between graft construct lengthening and increases in anterior laxity. An empirical relationship between an increase in length of the graft construct and an increase in anterior laxity using RSA. Therefore, the second objective was to determine an empirical relationship between lengthening of the graft construct and an increase in anterior knee laxity using RSA and assess whether this relationship can be used to predict the two causes associated with the graft.

To differentiate between the elastic and plastic causes of an increase in anterior laxity, it is necessary to apply a small anterior tare force to the tibia to remove any slack in the graft. Under the application of a small tare force, the elastic deformations will be negligible so that only the plastic deformations will contribute to anterior displacement of the tibia with respect to the femur. If the tare force is not large enough to remove the slack, however, then any slack will become an error in the plastic deformations. Likewise, any slack not removed will become an error in elastic deformations, which are measured under the application of a relatively large anterior force (necessary to make elastic deformations measurable). It has been shown that graft force decreases after cyclic loading due to lengthening of the graft construct [12,13]. It is unknown how much lengthening due to plastic deformations of the graft construct can occur before the graft force reaches zero while an anterior tare force is applied to the tibia (i.e., the slack is not removed). The third objective of this study was to determine the increase in anterior tare laxity before the graft force reaches zero under an anterior tare force.

Methods

Experiments. Six cadaveric legs (average 69 years, range 53 to 87 years) were obtained and stored at −20°C. Radiographs and inspection of the knees at the time of ACL reconstruction did not reveal either moderate or severe degenerative arthritis, chondrocalcinosis, or torn menisci. The intact leg was thawed overnight before use. Four 0.8 mm diameter tantalum markers (Tilly Medical Products AB, Lund, Sweden) were implanted into both the femur and tibia.

A custom loading apparatus applied posterior and anterior forces to the proximal tibia of the leg specimens (Fig. 2). Forces perpendicular to the tibia at 12.5 cm distal to the joint line were applied by a pneumatic actuator, controlled to within ±1 N, and held within this range until simultaneous radiographs (described below) were taken (approximately 10–20 s). Three additional markers were fixed in a line along the pneumatic actuator to enable the identification of the loading axis from the radiographs.

To standardize the load transmitted at the knee joint line perpendicular to the tibia (referred to below as the A-P shear force
transmitted at the knee) and to increase the precision of the dependent variables computed using RSA [14], two load cells positioned in line with the attachment at the tibia and the attachment at the ankle were used. The weight of the shank-foot of each specimen was estimated using regression equations [15]. The sum of the two load cells was equal to the sum of the A-P shear force transmitted at the knee and the component of the weight perpendicular to the shank. Three A-P shear forces transmitted at the knee were standardized: a posterior force of 90 N, an anterior tare force of 30 N, and an anterior force of 150 N. This standardization ensured that the A-P shear force transmitted at the knee and particularly the 30 N anterior tare force were the same for each specimen independent of the weight of the specimen.

The RSA system included a calibration cage and two portable X-ray machines. The calibration cage (Tilly Medical Products AB, Lund, Sweden) contained markers at known positions to be used for system calibrations. The calibration cage was modified to hold two X-ray cassettes and two scatter grids (Medical X-Ray Enterprises, Inc., Culver City, CA) placed at right angles to each other (A-P and lateral views). The scatter grids were used to minimize exposure of the radiographic film from scattered X-rays and thus improve image quality. The calibration cage surrounded the tibiofemoral joint, such that all markers could be seen from each view. Each portable X-ray machine (Model HF80H+, MinXray Inc., Northbrook, IL) was positioned at a distance between 80 cm and 100 cm from its respective film plane so that the direction of X-rays was approximately orthogonal to this plane. The X-ray machine parameters were initially set to 15 mA at 0.1 s and 80 kVp, and the exposure was adjusted by altering these parameters as needed depending on the bone density and thickness of the leg.

The legs were inserted into the loading apparatus and simultaneous radiographs were taken. The knees were flexed to 25 deg in the sagittal plane. This angle was defined between the lines extending along the femoral shaft and the tibial shaft using a goniometer. The line extending along the femoral shaft was defined between the center of the proximal end of the femoral shaft 20 cm proximal to the joint line and the lateral femoral epicondyle. The line extending along the tibial shaft was defined between the lateral femoral epicondyle and the lateral malleolus of the fibula. This flexion angle was selected because it is in the range where anterior knee laxity is the greatest [16]. Additionally, the tibia was placed in a position of neutral rotation, because this is the position of greatest laxity, in which all anterior force applied to the tibia is resisted by the ACL graft [16]. Simultaneous radiographs were taken in two planes (A-P view and lateral view) of the knee to define an anatomical coordinate system [14,17,18]. The leg was then preconditioned for 10 cycles between the 90 N posterior force and the 150 N anterior force. After preconditioning, simultaneous radiographs were taken as first the 90 N posterior force followed by the 150 N anterior force and were applied each for approximately 20 s.

Tibialis anterior and posterior tendon grafts were harvested from each leg. The midportion of each tendon was exposed and the skin and surrounding tendon sheath were cut exposing both the muscle and the distal insertion point of the tendon. The distal insertion point of the tendon was excised and the muscle was trimmed until it slid without resistance through a 9 mm sizing sleeve (Arthrotek, Inc., Warsaw, IN) when looped. To facilitate passing the graft around the cross-pin-type femoral fixation described below, 4 cm of the end of each strand were whip-stitched with a No. 1 braided, absorbable suture (Polyorb; United States Surgical/Syneture, Norwalk, CT) [19]. The tendons were then wrapped in a saline-soaked paper towel, and stored at −20°C. The tibial metaphysis was reinforced with polyurethane foam to provide fixation structural properties in elderly cadaveric tibia similar to those in young human tibia [19]. The ACL was excised and femoral drill holes were made using a previously described transtibial technique that positions the graft without roof impingement, without posterior cruciate ligament impingement, and with a tension pattern during passive flexion-extension that is similar to that of the intact ACL [20]. A tibial guide (Howell 65 deg Tibial Guide, Arthrotek Inc., Ontario, CA) was used to place a tibial tunnel so that the following criteria were met: (1) the tunnel axis was centered between the tibial spines and formed an angle of 65 ± 3 deg from the medial joint line of the tibia in the coronal plane, and (2) the tunnel was 5–6 mm posterior and parallel to the intercondylar roof at full extension in the sagittal plane. The tibial tunnel was drilled to the same diameter as the graft (i.e., 9 mm) using a tibial drill bit (Fully Fluted Cannulated Tibial Drills, Arthrotek, Inc.). A roof and wallplasty were performed to prevent impingement of the graft against the roof and wall of the intercondylar notch by inserting a metal rod, the same diameter as the tibial tunnel, so that it freely passed into the notch through the tibial tunnel with the knee in maximum hyperextension.

The femoral tunnel was positioned by inserting an over-the-top femoral aimer through the tibial tunnel (Size-Specific Femoral Aimer, Arthrotek, Inc.). An open-end femoral tunnel was drilled to 16 mm in diameter and a low-friction femoral bushing with an outer diameter of 16 mm and an inner diameter of 9 mm at its distal end was inserted into the femoral tunnel until flush with the intercondylar roof and fixed with bone cement [13]. This technique for placing the tibial and femoral tunnels endoscopically has good reproducibility between surgeons [21] and the tension pattern of the graft during passive flexion-extension is similar to that of the intact ACL [20].

To establish a vector that is parallel to the tunnel axes in each of the tibia and femur, two more markers were placed in the tibia and femur to establish tunnel vectors. Using a tunnel vector tool [22], two markers spaced 2 cm apart were inserted into the posterior wall of the tibial tunnel (T1 and T2, Fig. 3). The tunnel vector tool insured that the markers were inserted on a line that is parallel to

Fig. 3 A-P view of the knee showing marker placement, T1--T6 are markers implanted in the tibia, F1--F6 are markers implanted in the femur, G1--G8 are markers implanted in the graft, and EL and WL are markers attached to the femoral and tibial fixations, respectively. F and T are vectors aligned with the axes of the femoral and tibial tunnels, respectively.
the axis of the tunnel. Two more markers were placed in the low-friction femoral bushing to establish the orientation of the femoral tunnel. The custom femoral fixation was used, which allowed the length of the graft construct to be adjusted and the graft tension to be measured [13]. The cross bar of the custom femoral fixation, around which the graft is looped, was similar in design to the EZLoc, a femoral fixation commonly used clinically. Also, like the custom femoral fixation, the EZLoc is supported by the cortical bone.

To quantify the motion of the fixation devices, titanium markers (Painful Pleasures, Owings Mills, MD) were welded to the WasherLoc (WL, Fig. 3) (WasherLoc, Arthrotek, Inc.) and to a custom femoral fixation device described in Ref. [13], which was used to simulate the EZLoc (EL, Fig. 3), a commonly used femoral fixation device (EZLoc, Arthrotek, Inc.). These markers were welded in locations such that upon insertion of the fixation devices into the respective bones, the fixation devices would not impede the view of the markers in the radiographs.

Radio-opaque tantalum markers were injected into each graft to quantify the various causes of lengthening of the graft construct. The graft was looped through the adjustable femoral fixation device with the thicker strand oriented medially until the strands were equal in length. The lengths of both tunnels and the intrarticular space were measured using a femoral tunnel depth gauge (Femoral Tunnel Depth Gauge, Arthrotek, Inc.). The portions of the graft contained within the femoral and tibial tunnels were marked onto the graft. Two 0.8 mm diameter markers (G1 and G5) were implanted into one strand and two 1.0 mm diameter markers (G4 and G8) were implanted into the other strand 5 mm proximal to the tibial tunnel mark and 5 mm distal to the proximal tibial tunnel mark (Fig. 3). Similarly, on the femoral side, two 0.8 mm markers (G2 and G6) were implanted into one strand and two 1.0 mm markers (G3 and G7) were implanted into the other strand 5 mm distal to the EL marker and 5 mm proximal to the distal femoral tunnel mark (Fig. 3). Markers were injected 1/3 of the way through the diameter of the tendon with the injecting device perpendicular to the longitudinal axis of the tendon [23]. Using markers of different size allowed identification of each strand in the biplanar radiographs.

The graft was fixed in the femur using the custom femoral fixation, which allowed the length of the graft construct to be adjusted [13], and fixed in the tibia using the WasherLoc (Fig. 4). The distal ends of the graft were passed from proximal to distal through the low-friction femoral bushing, intrarticular space, and tibial tunnel. Tension was applied distally to the graft and the knee was flexed and extended for 15 cycles. With the knee in maximum extension, a 110 N load as measured using a load cell was applied to the distal end of the graft. This applied load was used because it restores the A-P laxity closely to normal [13]. The graft was fixed on the tibial side with an 18 mm extended-spiked WasherLoc. Immediately following ACL reconstruction, the legs were reinserted into the loading apparatus. Simultaneous radiographs were taken in two planes (A-P view and lateral view) of the knee to define an anatomical coordinate system [14,17,18]. Simultaneous radiographs were taken as a 90 N posterior force, 30 N anterior tare force, 150 N anterior force, and 30 N anterior tare force were each transmitted at the knee. The second application of the 30 N anterior tare force was necessary to determine a reference value of the elastic deformation. The reference value was the total deformation at the first 150 N anterior force minus the plastic deformation from the second application of the 30 N anterior tare force (see Appendix). The knees were then cyclically loaded 1500 times at 1/3 Hz between the 90 N posterior and 150 N anterior forces. This number of loading cycles was chosen because it allows anterior laxity to reach steady state [12]. The cyclic loading was paused after 50 cycles, 120 cycles, 280 cycles, 650 cycles, and 1500 cycles, at which time simultaneous radiographs were taken while the 30 N anterior tare force and 150 N anterior force were transmitted at the knee. These cycle intervals were based on a logarithmic scale so that more measurements would be made during the initial cycles when the greatest increases in lengthening were expected to occur [13]. The 30 N anterior tare force was determined in a pilot study conducted on three specimens and was the minimum shear force transmitted by the knee necessary to create 6 N of graft tension after the graft length had been increased so that the initial graft tension was 0.

To determine empirical relationships between the length of the graft construct and the 30 N anterior tare and 150 N anterior laxities (Objective 2), simultaneous radiographs were taken as the graft construct was lengthened in millimeter increments. After the knee had been cyclically loaded for 1500 cycles, the initial tension was restored by placing the knee in full extension and adjusting the adjustable femoral fixation to restore 110 N to the graft. The graft tension was reset to 110 N to negate plastic deformations that occurred during cyclic loading and hence restore A-P laxity to normal [13]. The knee was placed in 25 deg of flexion and the graft construct was lengthened to 7 mm in millimeter increments. Simultaneous radiographs were taken while 30 N anterior tare force and 150 N anterior force were transmitted at the knee and at each millimeter increment in the length of the graft construct.

To determine the increase in the 30 N anterior tare laxity before the graft force reaches zero (Objective 3), the graft force was measured as the 30 N anterior tare force was transmitted at the knee. A load cell was attached to the adjustable femoral fixation device. For each incremental increase in the graft construct length, the force in the load cell was recorded while the 30 N anterior tare force was applied. This force was multiplied by an experimentally determined ratio of 1.16 to correct for friction between the graft and femoral tunnel and hence determine the force in the intrarticular portion of the graft [13].

Data Analysis. Analysis of the radiographs was performed using a customized RSA data analysis system described previously [22]. Briefly, a digital image was obtained for each radiograph using a back-lit scanner (Epson 1600, Epson America Inc., Long Beach, CA). The two-dimensional centroid coordinates of the markers were measured from the digital image using a software program (SCION IMAGE 1.0, Scion Corporation, Frederick, MD). A customized computer program written in MATLAB (Version 6.0, The Mathworks Inc., Natick, MA) was used to determine A-P knee laxity and the eight causes of lengthening associated with the tibial and femoral fixations. This program initially computed the transformation of image coordinates to the calibration cage, the positions of the roentgen foci, and the 3D position coordinates of all the markers in a laboratory coordinate system defined by the calibration cage [24]. A center-of-rotation tibial coordinate system was established using anatomical landmarks seen from the A-P...
and lateral radiographs with the leg in the unloaded position [17].
The origin was the intersection of the line passing through the
centers of the posterior femoral condyles and the line that bisects
the femur in the coronal plane. The anterior direction (+x-axis) of
the anatomical coordinate system was defined from the line
formed by markers implanted in the housing of the pneumatic
actuator. The distal direction (+z-axis) was the cross product of x
and the line passing through the centers of the posterior femoral
condyles. The lateral direction (+y-axis) was the cross product of
z and x. A-P knee laxity for the 30 N anterior tare force and
150 N anterior force transmitted at the knee was determined by
computing the relative motion between the tibia and femur along
the x-axis.

The eight causes of lengthening associated with the fixations
were computed according to the equations in the Appendix (Ob-
jective 1). A single-factor ANOVA was used to determine whether
there were differences in lengthening due to the eight causes after
1500 loading cycles. The independent variable was the cause at
eight levels and the dependent variable was the amount of length-
ening due to each cause. A Tukey’s test was used to determine
which cause(s) was significantly greatest. For all statistical analy-
ases, the level of significance was set to $\alpha=0.05$.

To determine whether an empirical relationship can be used to
predict the two causes associated with the graft (Objective 2), the
seven incremental increases in graft length were plotted versus the
30 N anterior tare laxity and 150 N anterior laxity values for all
specimens. Simple linear regressions were used for the 30 N an-
terior tare force and 150 N anterior force relationships and the
95% prediction intervals were computed. The random error (i.e.,
standard deviation) associated with the intervals was used as a
measure of the error in predicting an increase in the graft con-
struct length for a given increase in the 30 N anterior tare and
150 N anterior laxities.

To determine how much the 30 N anterior tare laxity can
increase before the graft force reaches zero (Objective 3), the 30 N
anterior tare laxity was computed for each incremental increase in
the length of the graft construct. Due to a 6 N uncertainty in
predicting the weight of the shank and foot, 6 N of graft force was
used to establish a threshold for the maximum allowable increase
in the 30 N anterior tare laxity. When the threshold is reached,
the lengthening due to the plastic and elastic causes cannot be
differentiated.

Results

The increase in anterior laxity at 150 N of force transmitted by
the knee was $2.5 \pm 1.5 \text{ mm}$ after 1500 loading cycles. Of the eight
causes associated with the fixations, the greatest after 1500 load-
ing cycles was plastic deformation between the graft and tibial
fixation (0.8 mm mean ± 0.5 mm standard deviation) followed by
the plastic deformation between the graft and femoral fixation
(0.5 ± 0.1 mm) (Fig. 5). However, these two causes were not sig-
nificantly different ($p > 0.05$). The change in elastic stiffness be-
 tween the graft and tibial fixation and between the graft and femo-
ral fixation led to shortenings of the graft construct of
$0.3 \pm 0.3 \text{ mm}$ and $0.2 \pm 0.1 \text{ mm}$, respectively. This indicates that
the stiffness increased as the number of loading cycles increased.
The remaining four causes were close to 0.

The empirical relationships between an increase in length of the
graft construct and increase in the 30 N anterior tare and 150 N
anterior laxities were linear with r-squared values exceeding 0.85
(Figs. 6 and 7). For each millimeter increase in the 30 N anterior
tare laxity and 150 N anterior laxity, the graft construct length-
ened by 0.8 mm and 1.0 mm, respectively. The random errors in
predicting the increase in graft construct length for a given in-
crease in the 30 N anterior tare laxity (plastic cause) and for a
given increase in the 150 N anterior laxity (elastic cause) are
0.9 mm and 0.5 mm, respectively.

The minimum increase in the 30 N anterior tare laxity before
the graft force reached 6 N was 3.3 mm (Fig. 8).

![Fig. 5 The eight causes of lengthening of an ACL soft-tissue graft construct associated with the fixations versus the number of load cycles. The four plastic causes are (1) between the femoral fixation and bone (PFXB), (2) between the graft and femoral fixation (PFGX), (3) between the graft and tibial fixation (PTGX), and (4) between the tibial fixation and bone (PTXB). The four elastic causes are lengthening due to a decrease in elastic stiffness (1) between the femoral fixation and bone (EFXB), (2) between the graft and femoral fixation (EFGX), (3) between the graft and tibial fixation (ETGX), and (4) between the tibial fixation and bone (ETXB). Negative values indicate shortening. The standard deviations are shown. Causes with the same letter were not statistically different ($\alpha=0.05$).]
Discussion

Because a percentage of the patient population with knees reconstructed with single-loop tibialis tendon allografts do not benefit from a clinically stable knee and because lengthening of the graft construct is the source of a clinically unstable knee, it is of interest to develop a methodology for determining the causes of the increase in the length of a graft construct, which could be used in vivo. Hence, the objectives of our study were (1) to develop the methods to determine the eight causes associated with the fixations using RSA and to demonstrate the usefulness of these methods during cyclic loading of cadaveric knees, (2) to determine an empirical relationship between an increase in length of the graft construct and an increase in anterior laxity using RSA and assess whether this relationship can be used to predict the two causes associated with the graft, and (3) to determine the increase in the 30 N anterior tare laxity before the graft force is zero under a 30 N anterior tare force. Our key findings are that the eight causes associated with the fixations of an increase in anterior laxity can be determined using RSA, provided that the increase in the 30 N anterior tare laxity is less than 5 mm. The remaining two causes associated with the graft (i.e., plastic deformation and lengthening due to elastic stiffness changes) can be determined with quantified random errors using empirical relationships.

There are two potential sources of error associated with our RSA analysis: the inherent error associated with the RSA system and the migration of markers in the tendon graft under cyclic load. The inherent error associated with the RSA system is 0.05 mm, while the migration of markers injected into single-looped grafts is 0.10 mm. Only the inherent error would affect the four causes between the fixations and bones, while the migration...
To determine the plastic deformation and lengthening caused by a change in the elastic stiffness of the graft using RSA, two methods are available. One method is to inject multiple markers spaced along the intrarticular space of the graft and monitor how their positions change over time. This was done previously in double-looped and patellar tendon grafts and it was shown that the markers in the intrarticular space migrated in the graft while the graft markers in the locations of the tunnels did not migrate in the graft [9]. Because it is possible that the markers might migrate from the tendon to the intrarticular space and become a loose body in the knee joint, we chose to evaluate the second method, which is to determine the deformations of the graft based on regression equations. If the eight causes associated with the fixations are known and if the relationships between the increase in length of the graft construct and increases in the 30 N anterior tare and 150 N anterior laxities are known, then the deformations of the graft can be computed (Eqs. (A5) and (A14) in the Appendix). However, there were random errors in predicting the increase in graft construct length for a given increase in the 30 N anterior tare and 150 N anterior laxity of 0.9 mm and 0.5 mm, respectively. To put these errors into perspective, a 3 mm increase in anterior laxity is a threshold of instability in a reconstructed knee [25,26]. Hence, if these empirical relationships are used, then these two causes will be prone to random errors of 30% and 17%, which are substantial.

Our millimeter-for-millimeter relationship between increases in graft construct length and increases in the 150 N anterior laxity using RSA (Fig. 7) agrees with previous research, which determined this relationship using an arthrometer [10,11]. The anterior laxity determined using an arthrometer rarely correlates well with the anterior laxity determined using RSA [29–32]. This is expected because anterior laxity measurements using RSA and arthrometers depend on many factors [16,17,25,33]. Yet, our study agrees with multiple studies, which used different methods for determining anterior laxity. This is because only the increases in anterior laxity and not the laxity values themselves were exam-
ined in our study. Another study showed similar increases in anterior laxity determined using RSA and an arthrometer [14]. Therefore, we conclude that the anterior laxity is method dependent, whereas the increase in anterior laxity is not.

To differentiate between the plastic deformations and increases in elastic deformations, application of a tare force to the tibia that will apply a small tensile force to the graft is required. However, if the graft is not taut, then the plastic deformations will be prone to error. Because the graft force cannot be measured in vivo, it was necessary to relate the graft force to anterior tare laxity in our in vitro study. The minimum increase in the 30 N anterior tare laxity that caused the graft force to decrease to 6 N was 5 mm. The 6 N value was chosen instead of zero because 6 N is the error in determining the mass of the shank and foot [15]. Hence, if the 30 N anterior tare laxity increases more than 5 mm, then the plastic and elastic causes cannot be differentiated.

Nevertheless, the causes associated with the fixations can still be determined, but they will be a combination of the plastic and elastic causes (e.g., plastic deformation between the graft and tibial fixation (PTGX) and increase in elastic deformation between the graft and tibial fixation (ETGX) will be CTGX, where the C stands for combined). The combined results have been published previously for doubled-looped semitendinosus and gracilis and patellar tendon grafts with interference screws [9]. The combined results can still be used to identify the causes of an increase in the 150 N anterior laxity; however, these results will not provide the same level of detail in identifying the causes.

While our methods distinguish and determine eight causes of lengthening associated with the fixations as long as the increase in the 30 N anterior laxity is less than 5 mm, our methods do not separately measure every possible cause of lengthening. Among the eight causes associated with the fixations are plastic deformation between the fixation and bone and increases in elastic deformation between the fixation and bone. Contributing to either cause is deformation of the bone at the bone-fixation interface and deformation of the fixation device per se, which could be considered conceptually as two different causes. With this conceptual distinction, the total number of causes would increase from 10 to 14. However, it is difficult to separately measure deformations of both the bone and fixation device using conventional RSA, which requires that markers be attached to points of interest. When the deformation between the fixation and bone is determined using our methods, the sum of the bone deformation and deformation of the fixation device is reflected. For those fixations that demonstrate relatively large amounts of lengthening between the fixation and bone, it might be worthwhile to focus future efforts on developing RSA methods to determine deformation of the bone(s) separately from that of the fixation(s).

In summary, we have shown that RSA is a useful tool for determining eight causes associated with the fixations of lengthening of a soft-tissue ACL graft construct, provided that the 30 N anterior tare laxity increases less than 5 mm. With increases in the 30 N anterior tare laxity greater than 5 mm, the causes associated with the fixations can still be determined but the plastic causes cannot be differentiated from the elastic causes. The remaining two causes associated with the graft can be predicted using the regression models presented herein with defined random errors that are large.

Acknowledgment

The authors would like to thank the Musculoskeletal Transplant Foundation for support of this research project.

Appendix: Equations to Compute the Causes of Lengthening of an Anterior Cruciate Ligament Graft

The deformation between the graft and tibial fixation was determined using the two tendon markers placed closest to the WasherLoc (G1, G8, and WL, Fig. 3). Initially and after cyclic loading, the position vectors $\mathbf{P}^{G1/\text{WL}}$ and $\mathbf{P}^{G8/\text{WL}}$ locating the tendon markers from the WasherLoc marker were computed. The amount of deformation in the tibia between the graft and the fixation (TGX) was determined as the average vector change of $\mathbf{P}^{G1/\text{WL}}$ and $\mathbf{P}^{G8/\text{WL}}$ projected along the axis of the tibial tunnel by the equation

$$\text{TGX} = \frac{\Delta \mathbf{P}^{G1/\text{WL}} \cdot \mathbf{T} + \Delta \mathbf{P}^{G8/\text{WL}} \cdot \mathbf{T}}{2|\mathbf{T}|}$$ \hspace{1cm} (A1)$$

where $\Delta \mathbf{P}^{G1/\text{WL}}$ and $\Delta \mathbf{P}^{G8/\text{WL}}$ are the vector differences (final minus initial) of the vector to G1 from WL and the vector to G8 from WL, respectively, while \mathbf{T} is the vector along the axis of the tibial tunnel.

The deformation between the graft and the femoral fixation was determined using the two tendon markers placed closest to the adjustable femoral fixation device (G4, G5, and EL, Fig. 3). Initially and after cyclic loading, the vectors $\mathbf{P}^{G4/\text{EL}}$ and $\mathbf{P}^{G5/\text{EL}}$ locating the tendon markers from the adjustable femoral fixation device marker were computed. The amount of deformation in the femur between the graft and the fixation (FGX) was determined as the average vector change of $\mathbf{P}^{G4/\text{EL}}$ and $\mathbf{P}^{G5/\text{EL}}$, projected along the axis of the femoral tunnel by the equation

$$\text{FGX} = \frac{\Delta \mathbf{P}^{G4/\text{EL}} \cdot \mathbf{F} + \Delta \mathbf{P}^{G5/\text{EL}} \cdot \mathbf{F}}{2|\mathbf{F}|}$$ \hspace{1cm} (A2)$$

where $\Delta \mathbf{P}^{G4/\text{EL}}$ and $\Delta \mathbf{P}^{G5/\text{EL}}$ are the vector differences (final minus initial) of the vector to G4 from EL and to G5 from EL, respectively, while \mathbf{F} is the vector along the axis of the femoral tunnel.

The deformation between the tibial fixation and bone was determined using the marker welded to the WasherLoc and marker A1 (WL and T1, Fig. 3). Initially and after cyclic loading, the vectors $\mathbf{P}^{T1/\text{WL}}$ locating the adjustable femoral fixation device from the tibia was computed. The amount of deformation between the tibial fixation and bone (TXB) was determined as the vector change of $\mathbf{P}^{T1/\text{WL}}$ from the initial vector, projected along the axis of the tibial tunnel by the equation

$$\text{TXB} = \frac{\Delta \mathbf{P}^{T1/\text{WL}} \cdot \mathbf{T}}{|\mathbf{T}|}$$ \hspace{1cm} (A3)$$

where $\Delta \mathbf{P}^{T1/\text{WL}}$ is the vector difference (final minus initial) of the vector to T1 from WL.

The deformation between the femoral fixation and bone was determined using the tendon marker welded to the adjustable femoral fixation device and marker F1 on the femur (EL and F1, Fig. 3). Initially and after cyclic loading, the position vector $\mathbf{P}^{F1/\text{EL}}$ locating the adjustable femoral fixation device from the femur was computed. The amount of deformation between the femoral fixation and bone (FXB) was determined as the vector change of $\mathbf{P}^{F1/\text{EL}}$ from the initial vector, projected along the axis of the femoral tunnel by the equation

$$\text{FXB} = \frac{\Delta \mathbf{P}^{F1/\text{EL}} \cdot \mathbf{F}}{|\mathbf{F}|}$$ \hspace{1cm} (A4)$$

where $\Delta \mathbf{P}^{F1/\text{EL}}$ is the vector difference (final minus initial) of the vector to F1 from EL.

The amount of plastic deformation corresponding to each of the four causes associated with the fixations was computed according to Eqs. (A1)–(A4) where the final vector lengths were computed for the 30 N anterior tare force transmitted at the knee and the initial vector lengths were computed for the first application of the 30 N anterior tare force transmitted at the knee. These plastic deformations are denoted by PTGX and PFGX for the tibial fixation and FFX and FXB for the femoral fixation. The plastic deformation of the graft substance between the fixations was determined indirectly. The amount of plastic lengthening of the graft substance between the fixations (PG) was calculated as...
where ΔL_{30} is the change in the 30 N anterior tare laxity with respect to the first application of the 30 N anterior tare force transmitted at the knee and K_2 is the slope from the relationship between the length of the graft construct and the 30 N anterior tare laxity.

To compute the lengthening of the graft construct due to changes in stiffness, the elastic deformation was computed for the first load cycle. Equations (A1)–(A4) were used to compute the total elastic deformation for each fixation except that the final vector lengths were computed for the 150 N anterior force and the initial vector lengths were computed for the second application of the 30 N anterior tare force. The lengthening of the graft construct due to the initial stiffness of the femoral fixation components for the first application of the 150 N anterior force is given by

$$\text{EFXB}_i = \text{EFXB}_{150}$$ \hspace{1cm} (A6)

$$\text{EFGX}_i = \text{FGX}_{150}$$ \hspace{1cm} (A7)

where EFXB_{150} and EFGX_{150} are the two elastic deformations at the femoral site of fixation. Similarly, the lengthening of the graft construct due to the initial stiffness of the tibial fixation components is given by

$$\text{ETXB}_i = \text{TXB}_{150}$$ \hspace{1cm} (A8)

$$\text{ETGX}_i = \text{TGX}_{150}$$ \hspace{1cm} (A9)

where TXB_{150} and TGX_{150} are the two elastic deformations at the tibial site of fixation.

The lengthening of the graft construct due to changes in stiffness of the femoral and tibial fixations was computed as

$$\text{EFXB} = \text{EFXB}_{150} - \text{EFXB} - \text{PFXB}$$ \hspace{1cm} (A10)

$$\text{EFGX} = \text{FGX}_{150} - \text{EFGX} - \text{PFGX}$$ \hspace{1cm} (A11)

$$\text{ETXB} = \text{TXB}_{150} - \text{ETXB} - \text{PTXB}$$ \hspace{1cm} (A12)

$$\text{ETGX} = \text{TGX}_{150} - \text{ETGX} - \text{PTGX}$$ \hspace{1cm} (A13)

The lengthening of the graft construct due to changes in stiffness of the graft (EG) was computed as

$$\text{EG} = K_2 \Delta L_{30} = \text{EFXB} - \text{EFGX} - \text{ETXB} - \text{ETGX} = K_2 \Delta L_{30}$$ \hspace{1cm} (A14)

where ΔL_{30} is the change in the 150 N anterior laxity with respect to the first application of the 150 N anterior force transmitted at the knee, ΔL_{10} is the change in the 30 N anterior tare laxity with respect to the first application of the 30 N anterior tare force transmitted at the knee, and K_2 is the slope value from the relationship between the length of the graft construct and the 30 N anterior laxity.

References

