BME UNDERGRADUATE CURRICULUM

Medical Devices

FRESHMAN

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Winter</td>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>MAT 21A Calculus</td>
<td>4</td>
<td>MAT 21B Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CHE 2A General Chemistry</td>
<td>5</td>
<td>CHE 2B General Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>BIM 1 Intro to BME</td>
<td>2</td>
<td>BIS 2A Intro to Biology</td>
<td>5</td>
</tr>
<tr>
<td>Lower Division Composition</td>
<td>4</td>
<td>GE elective</td>
<td>GE elective</td>
</tr>
</tbody>
</table>

SOPHOMORE

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Winter</td>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>MAT 21D Vector Analysis</td>
<td>4</td>
<td>MAT 22A Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>CHE 8A Organic Chemistry</td>
<td>2</td>
<td>CHE 8B Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>PHY 9B Classical Physics</td>
<td>5</td>
<td>PHY 9C Classical Physics</td>
<td>5</td>
</tr>
<tr>
<td>ENG 6 MATLAB</td>
<td>4</td>
<td>EE: ENG 35 Statics</td>
<td>4</td>
</tr>
</tbody>
</table>

JUNIOR

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Winter</td>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>BIM 105 Probability and Stats for BME</td>
<td>4</td>
<td>BIM 106 Biotransport</td>
<td>4</td>
</tr>
<tr>
<td>BIM 116 Physiology</td>
<td>5</td>
<td>ENG 100 Circuits II</td>
<td>3</td>
</tr>
<tr>
<td>SE: ECS 32A</td>
<td>4</td>
<td>SE: ECS 32B</td>
<td>4</td>
</tr>
<tr>
<td>Upper Division Composition Course=4 units, Exam=0 units</td>
<td>4/0</td>
<td>EE: BIM 170 Aspects of Medical Device Design & Manufacturing BIM 107 Mfg for BME*</td>
<td>2</td>
</tr>
</tbody>
</table>

SENIOR

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Winter</td>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>BIM 110L BME Senior Design Lab</td>
<td>2</td>
<td>BIM 110A BME Senior Design</td>
<td>3</td>
</tr>
<tr>
<td>BIM 111 Biomedical Instrumentation Lab</td>
<td>6</td>
<td>EE: BIM 120 Intro to Materials Science for BME</td>
<td>4</td>
</tr>
<tr>
<td>EE: BIM 171 Clinical Applications for Biomedical Device Design</td>
<td>4</td>
<td>EE: BIM 189C Intro to Rapid Prototyping</td>
<td>2</td>
</tr>
<tr>
<td>ENG 105 Thermodynamics</td>
<td>4</td>
<td>ENG 190 Professional Responsibility Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>

2021-22 Degree requirements will require BIM 20L and BIM 107

Other courses: EE - BIM Skills Modules – 172 Neuroengineering, 174 Microcontrollers, 189C/175 Metalworking, 176 Microfluidics, ENG 102 Dynamics. BIM 189 Biomedical/Pharmaceutical Polymers

September 2020