Atul N. Parikh


Office: 3007 Ghausi Hall

Telephone: (530) 754-7055


Lab: Parikh Lab

Personal Education

1994 Ph.D. Materials (Polymers) Science, The Pennsylvania State University
1987 B. Chem. Eng., (UDCT) The University of Bombay

Research Interests:

Biomolecular Materials and Dynamic Self-Assembly, Synthetic Chemical Biology, Membrane Biophysics

Biomolecular Materials and dynamic self-assembly. A spectacular array of molecular machineries, consisting of many disparate molecular components, dynamically assemble and disassemble at the surface of a cell (and of sub-cellular compartments). They allow the cell to perform acts of controlled chemical synthesis, molecular recognition, signaling, energy transduction, transport, cell-cell communication, cell-division, growth and motility. At the molecular level, cellular surfaces are represented by a supramolecular assembly of vast number of chemically-independent molecules including phospholipids, glycolipids, membrane proteins, ion-channels, and proton pumps to name a few.  This compositional complexity couples with in-plane and out-of-plane dynamics (itself spanning a broad range of length- and time-scales) to produce an astounding array of spatially and temporally distinct membrane functions.  Some examples include curvature (e.g., cilia, bacterial poles, caveoli) and composition (e.g., lipid rafts and micro-domains) dependent sub-cellular organization of membrane-associated functions, and micro-environment dependent regulation of channel transport (selective ion regulators, pore formations).

From the vantage of physical sciences, this spatio-temporal mode of molecular organization challenges the traditional view that thermodynamic equilibrium conditions alone determine structure-function relations. Rather it inspires a shift in emphasis from thermodynamic to kinetic regimes, in which focus on equilibrium structures (global minima) is replaced by the one on higher-order organizational states (e.g., transitions between various local metastable states of different structures) and corresponding energy landscapes.


Within this broad framework, our current experimental effort is focused on understanding spatial organization and dynamic modulation of membrane components (e.g., lipid hydrolysis) and membrane topology (e.g., curvatures and domains) triggered by (1) specific external stimuli such as protein-binding, enzymatic action, detergent interactions, and oxidative stress; (2) gradients in environmental conditions including pH, salts, and local hydration; and (3)  intermembrane interactions such as occurs during viral fusion and endocytosis. Our model systems span the range from molecularly-tailored membrane configurations (e.g., vesicles, reconstituted lipoproteins, and supported membranes) to whole cells and measurement assays span quantitative applications of optical, fluorescence, and infrared microscopy and spectroscopy based methods.

Synthetic (Reconstitutive) Chemical Biology. A new thrust in our laboratory is aimed at contributing to (1) the development of physical science based understanding of the physical-chemical origins of cellular complexity and (2) exploiting this understanding toward designing synthetic proto-cells endowed with and optimized for specific functions.  Our current  emphases for fundamental biophysical/biochemical investigations include exploring physical-chemical means for reconstituting compartmentalization and self-reproduction into synthetic lipid vesicles  and understanding their consequences on reaction-diffusion chemistries within vesicular confinements.  Toward engineered material systems, we are focused on reconstituting vesicle-, supported membrane-, and lipoprotein-based protocell configurations for targeted deliver of cargo and for devising vectors for antipathogenic applications.

Selected Publications

“Targeted Delivery of Multicomponent Cargos to Cancer via Nanoporous Particle-Supported Lipid Bilayers”, Carlee E. Ashley, Eric C. Carnes, Genevieve K. Phillips, David Padilla, Paul N. Durfee, Page A. Brown, Tracey N. Hanna, Juewen Liu, Brandy Phillips, Mark B. Carter, Nick J. Carroll, Xingmao Jiang, Darren R. Dunphy, Cheryl L. Willman, Dimiter N. Petsev, Deborah G. Evans, Atul N. Parikh, Bryce Chackerian, Walker Wharton, David S. Peabody, & C. Jeffrey Brinker, Nature Materials, in press 2011

“In vivo lipidomics using single-cell Raman spectroscopy”, Huawen Wu, Joanne V. Volponia, Ann E. Oliver, Atul N. Parikh, Blake Simmons, and Seema Singh, PNAS, 108, 3809-3814 2011

“Reconstituted lipoprotein: a versatile class of biologically-inspired nanostructures”, Daniel A. Bricarello, Jennifer T. Smilowitz, Angela M. Zivkovic, J. Bruce German, Atul N. Parikh, ACS Nano, 5, 42-57 2011

“Liposil-Supported Lipid Bilayers as a Hybrid Platform for Drug Delivery”, Shukun Shen, Eric Kendall, Ann Oliver, Viviane Ngassam, Daodao Hu, and Atul N. Parikh Soft Matter, 7, 1001-1005, 2011


“Lactosomes: Structural and Compositional Classification of Unique Nanometer-Sized Protein Lipid Particles of Human Milk, Nurit Argov-Argaman, Jennifer T. Smilowitz, Daniel A. Bricarello, Mariana Barboza, Larry Lerno, John W. Froehlich, Hyeyoung Lee, Angela M. Zivkovic, Danielle G. Lemay, Samara Freeman, Carlito B. Lebrilla, Atul N. Parikh, and J. Bruce German, Journal of Agricultural & Food Chemistry 58, 11234-11242, 2010

“Order at the Edge of the Bilayer: Membrane Remodeling at the Edge of a Planar Supported Bilayer is Accompanied by a Localized Phase Change”, Andreia Michelle Smith, Madhuri Vinchurkar, Niels Gronbech-Jensen, Atul N. Parikh, Journal of the American Chemical Society 132, 9320-9327, 2010

“Biosynthetic Decoys: Ganglioside embedded in reconstituted lipoprotein binds cholera toxin with elevated affinity”, Daniel A Bricarello1, Emily J. Mills, Jitka Petrlova, John C. Voss, Atul N. Parikh, Journal of Lipid Research 51 2731-2738 2010

“Templating Membrane Assembly, Structure, and Dynamics Using Engineered Interfaces, A. E. Oliver, A. N. Parikh, Biochimica Et Biophysica Acta-Biomembranes, 1798, 839-850, 2010